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In this letter, we provide the first observational evidence of substantial collisionless damping (CD)
modulation in the magnetohydrodynamic (MHD) turbulence cascade in Earth’s magnetosheath
using four Cluster spacecraft. Plasma turbulence is primarily shaped by the forcing on large scales
and damping on small scales. Based on an improved compressible MHD decomposition algorithm,
our observations demonstrate that CD enhances the anisotropy of compressible MHD modes due
to their strong pitch angle dependence. The wavenumber distributions of slow modes are more
stretched perpendicular to the background magnetic field (B0) under CD modulation compared to
Alfvén modes. In contrast, fast modes are subject to a more significant CD modulation. Fast modes
exhibit a scale-independent, slight anisotropy above the CD truncation scales, and their anisotropy
increases as the wavenumbers fall below the CD truncation scales. As a result, CD affects the
relative energy fractions in total compressible modes. Our findings take a significant step forward
in comprehending the functions of CD in truncating the compressible MHD turbulence cascade and
the consequential energy anisotropy in the wavevector space.

Introduction.— Plasma turbulence, particularly its
compressible component, plays a crucial role in numer-
ous astrophysical processes, such as the heating and ac-
celeration of solar wind, cosmic ray transport, and star
formation [1–4]. The current model of plasma turbulence
is typically characterized by a three-way process: (1) en-
ergy injection on large scales [5, 6], (2) inertial energy
cascade following some self-similar power law scaling, and
(3) dissipation caused by certain kinetic physical pro-
cesses on small scales [7, 8]. Inertial energy cascade, the
most characteristic signature of magnetohydrodynamic
(MHD), has been effectively described using incompress-
ible MHD models such as the isotropic theory (IK65)
[9, 10] and scale-dependent anisotropic turbulence the-
ory (GS95) [11]. The nearly incompressible (NI) theory
has also been used to explain some phenomena related
to compressible solar wind turbulence [12, 13]. How-
ever, compressible MHD turbulence is subjected to vari-
ous damping processes while following the inertial energy
cascade [14–17], which is still not completely understood.
Fully comprehending how damping truncates compress-
ible MHD turbulence is an inseparable piece for depicting
turbulence in real astrophysical plasma.

The anisotropy of compressible turbulence in the in-
ertial range has been extensively studied through simu-
lations and satellite observations [18, 19]. In a homoge-
neous plasma with a uniform background magnetic field
(B0), small amplitude compressible MHD fluctuations
can be decomposed into three MHD eigenmodes (namely,
Alfvén, slow, and fast modes) [20–25]. The linear in-
dependence among the three MHD eigenmodes enables

individual analysis of their statistical properties in the
small amplitude limit [21, 26]. The mode composition of
MHD turbulence significantly affects the energy cascade
and observational turbulence statistics [23, 27–29]. Based
on current compressible turbulence models, Alfvén and
slow modes are expected to follow a cascade with scale-

dependent anisotropy k‖ ∝ k
2/3
⊥ , where k⊥ and k‖ are

wavenumbers perpendicular and parallel to B0 [11, 30].
In contrast, fast modes are expected to show isotropic be-
haviors and cascade like the acoustic wave [31, 32]. These
theoretical conjectures have been confirmed by numerical
simulations [23, 26].

Earlier theoretical studies have demonstrated a strong
propagation angle dependence in collisionless and viscous
damping, influencing the three-dimensional (3D) energy
distributions [16, 33–35]. The collisionless damping (CD)
leads to the rapid dissipation of plasma waves by the
wave-particle interactions via gyroresonance or Landau
resonance. Despite theoretical predictions, direct obser-
vations demonstrating how CD modulates the statistics
of compressible MHD modes are still lacking, primarily
due to the limited satellite measurements. Thanks to
the availability of spatial information from four Cluster
spacecraft, this letter presents the first observational ev-
idence of substantial CD modulation in the compressible
MHD turbulence cascade by comparing the CD rate pre-
dicted by theory with the compressible energy distribu-
tions measured by the Cluster mission.

Overview.— Fig. 1 shows an overview of Cluster ob-
servations in Earth’s magnetosheath during 19:00-14:00
UT on 2-3 December 2003 in Geocentric Solar Ecliptic
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FIG. 1. An overview of fluctuations measured by Cluster -1.
The red bar on the top marks the interval during 23:00-10:00
UT on 2-3 December 2003. (a) Magnetic field. (b) Proton
bulk velocity. (c) Cross-check of proton density from CIS-
HIA (black), and electron density from Plasma Electron And
Current Experiment (PEACE) [36] onboard Cluster -2 (red)
and from Waves of High frequency and Sounder for Probing
of Electron density by Relaxation (WHISPER) [37] (green).
(d,e) Temperature and plasma β (the ratio between thermal
and magnetic pressures). (f) Moving-window intermediate
time series of spectral slopes (α) of trace proton velocity and
magnetic power. The horizontal dashed lines represent α =
−5/3 and −3/2. (g) δVp/VA (black) and δB/(2B0) (red),
where δVp and δB are rms proton velocity and magnetic field
fluctuations, respectively.

(GSE) coordinates. During this time interval, the Clus-
ter mission is in a tetrahedral-like configuration, with
the relative separation dsc ∼ 200km (around 3 proton
inertial length di ∼ 74km), enabling us to perform a
multi-point analysis on MHD turbulence. Performing an
MHD mode decomposition during 23:00-10:00 UT (the
red bar on the top of Fig. 1) is applicable for the follow-
ing reasons. First of all, the background magnetic field
measured by the Fluxgate Magnetometer (FGM) [38] and
proton plasma parameters measured by the Cluster Ion
Spectrometry’s Hot Ion Analyzer (CIS-HIA) [39] are rel-
atively stable, as shown in Figs. 1(a-d). Fluctuations
are approximately stationary and homogeneous based on
the analysis of correlation functions [40]. Additionally,
fluctuations are in a well-developed state, as shown in
Fig. 1(f) where the spectral slopes (αVp and αB) of the
trace proton velocity and magnetic power at spacecraft-
frequency fsc ∼ [0.001Hz, 0.1fci] range between −5/3

and −3/2 (the proton gyro-frequency fci ∼ 0.24Hz).
The trace proton velocity and magnetic power are cal-
culated through the fast Fourier transform (FFT) with
five-point smoothing in a moving time window with a
five-hour length and five-minute moving step. Further-
more, the turbulent Alfvén Mach number is MA,turb =
δVp/VA ∼ 0.3 (Fig. 1(g)), satisfying the small-amplitude
approximation. Table I provides the background param-
eters used for further analysis.

MHD mode decomposition.— We decompose the three
MHD eigenmodes by combining three methods: linear
decomposition method [21], singular value decomposition
(SVD) method [41], and multi-spacecraft timing analysis
[42]. This allows direct retrieval of energy wavenumber
distributions independent of any spatiotemporal hypoth-
esis (e.g., Taylor hypothesis [43]). We separate compress-
ible fluctuations into slow and fast modes (Alfvén modes
are analyzed in [40]) and establish 3D wavenumber dis-
tributions in each moving time window. The window
length selection (5 hours) provides low-frequency (large-
scale) measurements while ensuring B0 is approaching
the local background magnetic field.

First, we obtain wavelet coefficients of proton veloc-
ity, magnetic field, and proton density using Morlet-
wavelet transforms [42]. Second, wavevector directions

(k̂SV D(t, fsc)) are calculated using SVD of magnetic
wavelet coefficients based on the linearized Gauss’s law
for magnetism. Third, the k̂b̂0 coordinates are built by
k̂SV D, where axis basis vectors are ê‖ = b̂0 = B0/|B0|
, ê⊥1 = k̂SV D × b̂0/|k̂SV D × b̂0|, and ê⊥2 = b̂0 ×
(k̂SV D × b̂0)/|b̂0 × (k̂SV D × b̂0)|. Fourth, power spec-
tra (Pεl(t, fsc)) are estimated as the square of wavelet

coefficients in k̂b̂0 coordinates, where ε = V,B,N repre-
sents proton velocity (V ), magnetic field (B), and proton
density (N) fluctuations, and l represents ê‖, ê⊥1, and
ê⊥2. Fifth, wavevectors (k(t, fsc)) are calculated using
the multispacecraft timing analysis [44]. It is worth not-
ing that k is not entirely aligned with k̂SV D. We present
the results under η < 20◦ in the main text, where η is
the angle between k and k̂b̂0 plane.

Sixth, we construct a set of 200 × 200 × 200 bins to
obtain 3D wavenumber distributions of energy density
(Dεl(k)). In each bin, fluctuations have approximately
the same wavenumber. To cover all MHD wavenum-
bers and ensure measurement reliability, we restrict our
analysis to fluctuations with 1/(100dsc) < k < 1.1 ×
0.1/di and 2/t∗ < frest < fci, where the wavenum-

ber is k =
√
k2‖ + k2⊥, t∗ is the time window length,

frest = fsc−k ·V/2π is the frequency in the plasma flow
frame, and V is the proton bulk velocity with the space-
craft velocity being negligible. Fluctuations beyond the
wavenumber and frequency ranges are set to zero. Dεl(k)
is calculated by averaging Pεl(t, fsc) over effective time
points in all time windows and integrating over fsc.

Seventh, fast- and slow-mode velocity fluctuations in
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TABLE I. Background parameters after replacing the outliers with the linear interpolation of neighboring, non-outlier values.

Start time (UT) End time (UT) B0 (nT) Np (cm−3) VA (km/s) VS (km/s) βp VTe di fci
2003-12-02/23:00 2003-12-03/10:00 19.2 10.1 133 121 1.0 3700 74 0.24

wavevector space are calculated by

δVk,± = 〈|δVk,‖ê‖ · ξ̂± ± δVk,⊥2ê⊥2 · ξ̂±|〉, (1)

where ’+’ is for fast modes, ’−’ is for slow modes, and
angular brackets denote the time average. Using the ran-

dom phase approximation, δVk,± ∝ |
√
DV‖(k)cosζê‖ξ̂± ±√

DV⊥2
(k)sinζê‖ξ̂± |, where ζê‖ξ̂± is the angle between ê‖

and ξ̂±. Fast- and slow-mode displacement vectors are
given by [21]

ξ± ∝ (−1 + α±
√
A)k‖ê‖ + (1 + α±

√
A)k⊥ê⊥2. (2)

The unit displacement vectors are ξ̂± = ξ±/|ξ±|. The
parameter A = (1 +α)2−4αcosθ, where α = V 2

S /V
2
A, VA

is the Alfvén speed, VS is the sound speed, and θ is the
angle between k and B0. Fast- and slow-mode magnetic
field and proton density fluctuations are estimated as [21]

δBk,± = B0
δVk,±
Vph,±

|ê‖ × ξ̂±|, (3)

δNk,± = N0
δVk,±
Vph,±

k̂ · ξ̂±. (4)

The unit wavevector is k̂ = k/|k|, and N0 is the back-
ground proton density. Fast- and slow-mode phase
speeds are given by [45]

V 2
ph,± =

1

2
{(V 2

S + V 2
A)±

[(V 2
S + V 2

A)2 − 4V 2
S V

2
Acos

2θ]1/2} (5)

Finally, we calculate the energy density of fast and slow
modes Dε,± = δε2k,±. Appendix A presents more method
details. Appendix B shows that the decomposed mag-
netic field and density fluctuations (inferred from proton
velocity fluctuations via Eqs. (3,4) [21]) match those di-
rectly measured by FGM and CIS-HIA, indicating the
reliability of MHD mode decomposition.

Slow modes.— In Fig. 2(a), we observe that the nor-
malized wavenumber distributions of the proton velocity
energy of slow modes (D̂V−; color contours) are promi-
nently distributed along the k⊥ axis, suggesting a faster
cascade in the perpendicular direction. We also observe
an increase in the anisotropy of energy distributions with
the increasing wavenumbers. These observations suggest
that smaller eddies of slow modes are more elongated
along B0, in agreement with theoretical expectations and
simulation results [18, 23]. The anisotropic behaviors of
slow modes found here are roughly similar to those for
Alfvén modes, presumably because slow modes passively

FIG. 2. Slow modes. (a) Wavenumber distributions of D̂V−
(color contours) and γslow (black dashed curves). D̂V− =
DV−/DV−,max is normalized by the maximum energy den-

sity, where D̂V− less than six orders of magnitude or at
k < 5 × 10−5km−1 is set to zero. (b) Slow-mode damping
rate (γslow). The blue dotted curve in each panel marks an
isotropic contour k = 2 × 10−4km−1. The black dotted line
marks the valley line of γslow contours.

mimic Alfvén modes [21, 26]. On top of this anisotropic
contour, the D̂V− spectrum exhibits a valley contour
along the black dotted line, a notable difference from the
Alfvén-mode spectrum that steadily decreases with k⊥ at
each k‖ [40]. The anisotropy difference between slow and
Alfvén modes can be explained by the fact that collision-
less damping (CD) can affect slow modes but has little
influence on Alfvén modes [3]. To examine this expla-
nation, we estimate slow-mode theoretical damping rate
(γslow) as a function of k,

γslow =
|k|VS

2| cos θ|
(
1

8
π
me

mp
)1/2(

1− cos 2θ[(V 2
S /V

2
A) cos 2θ − 1]

[1 + V 4
S /V

4
A − 2(V 2

S /V
2
A) cos 2θ]1/2

)
(6)

using the parameters in Table I, where me and mp are
the electron and proton mass, respectively [46]. Over-
all, γslow significantly increases with k‖ and has a little
change with k⊥ in Fig. 2(b). The contours of γslow (black
dashed curves), which is also superposed in Fig. 2(a),
perfectly align with the color contours of the D̂V− spec-
trum along the black dotted line. It suggests that CD can
modulate energy distributions of slow modes, and the CD
modulation is expected to be more prominent at larger
k‖ due to the increase of γslow. Therefore, wavenumber
distributions of slow modes are more stretched perpen-
dicular to B0 under CD modulation compared to Alfvén
modes.

To further estimate the anisotropy of fast (+) and slow
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FIG. 3. The relation between the anisotropy of energy distri-
butions (R± estimated by Eq. (7)) and collisionless damping
rates. (a) R− versus γslow,‖. (b) R+ versus γfast,⊥. The red
dashed lines represent the power-law fits.

(−) modes, we define a parameter

R±(k
′
) =

DV±(k⊥ = k
′
)

DV±(k‖ = k′)
(7)

for a given wavenumber k
′
, where the reduced perpendic-

ular and parallel wavenumber distributions of the energy
density are calculated by

Dε±(k⊥) ∼
k‖=kupp∑
k‖=klow

Dε±(k⊥, k‖), (8)

Dε±(k‖) ∼
k⊥=kupp∑
k⊥=klow

Dε±(k⊥, k‖). (9)

The integral upper and lower limits are kupp = 0.1/di ∼
1.4×10−3km−1 and klow = 1/(100dsc) ∼ 5×10−5km−1.

Fig. 3(a) shows a strong correlation between
log10R−(k

′
) and log10γslow,‖(k

′
) with the correlation

coefficient of 0.92, where the parallel damping rate
γslow,‖(k

′
) is calculated by averaging γslow(k⊥, k‖ = k

′
)

over k⊥ for a given wavenumber k
′
. Moreover, the pos-

itive index of power-law fit (0.48 ± 0.23) indicates that
more significant anisotropy of slow modes corresponds to
larger values of γslow along B0.
Fast modes.— Different from slow modes, fast modes

exhibit CD truncation scales (kc) which are obtained by
equating the fast-mode cascading rate (τ−1fast) and damp-
ing rate (γfast), marked by the yellow line in Fig. 4(a).
τ−1fast is defined as (k/L0)1/2δV 2

0 /Vph,+ [35], where the
injection fluctuating velocity δV0 is ∼ 40km/s, the cor-
relation time determined by correlation functions Tc is
∼ 2300s, and thus the injection scale L0 is ∼ 9.2×104km.
Fig. 4(b) shows that wavenumber distributions of τ−1fast
present an anisotropy independent of scales. When Vph,+
(∼ 100 − 200km/s) is much less than the electron ther-
mal speed VTe (∼ 3700km/s), the fast-mode theoretical
damping rate can be estimated as

γfast =
|k|VS

2| cos θ|
(
1

8
π
me

mp
)1/2(

1 +
cos 2θ[(V 2

S /V
2
A) cos 2θ − 1]

[1 + V 4
S /V

4
A − 2(V 2

S /V
2
A) cos 2θ]1/2

)
(10)

using the parameters in Table I [46]. Fig. 4(c) shows that
γfast sharply enhances with increasing k⊥ and is up to
0.9rad/s in the bottom right corner where θ approaches
90◦, indicating that fast modes undergo more severe CD
damping and rapid dissipation at larger k⊥ and larger θ.

We superpose the contours of τ−1fast (black solid curves)
and γfast (purple dashed curves) on the normalized
wavenumber distributions of the proton velocity energy
of fast modes (D̂V+; color contours) in Fig. 4(a). The
D̂V+ spectrum roughly agrees with the contours of τ−1fast
on the left side of the yellow line (above kc; τ−1fast > γfast)

at k < 2 × 10−4km−1 (blue dotted curve). The scale-
independent, slight anisotropy of the D̂V+ spectrum sug-
gests that fast-mode energy distributions do not depend
heavily on B0, consistent with numerical simulations of
fast modes [21, 23]. In contrast, at k > 2×10−4km−1, the
inverted triangular shape of the D̂V+ spectrum (narrow-
ing down at smaller k‖) is generally compatible with the
triangle contours of γfast on the right side of the yellow
line (below kc; τ−1fast < γfast), implying the crucial role
of γfast in shaping fast-mode energy spectrum. These
findings support that energy distributions of plasma tur-
bulence are shaped by the forcing on large scales and
damping on small scales.

Fig. 3(b) shows that the correlation coefficient between
log10R+(k

′
) and log10γfast,⊥(k

′
) is 0.90, and their power-

law fit is 1.05 ± 0.26, where the perpendicular damp-
ing rate γfast,⊥(k

′
) is obtained by averaging γfast(k⊥ =

k
′
, k‖) over k‖ for a given wavenumber k′. This strong

correlation between CD and anisotropy of fast modes fur-
ther indicates that CD plays an increasingly important
role in shaping the energy distributions of fast modes as
k⊥ increases.

The relative energy fractions in the total energy of com-
pressible modes.— Fig. 5 shows the fast-mode energy
normalized to the total energy of compressible modes as
a function of k⊥ and θ, which is defined as Ffast,ε =

Dε+
Dε++Dε−

. In Fig. 5(a), the fraction of fast-mode energy

for the three parameters (ε = V,B,N) decreases as k⊥ in-
creases. The similar tendency of the three ratios suggests
that CD of compressible modes plays a comparable role
at varying k⊥, despite their different energy fractions.
Meanwhile, Fig. 5(b) demonstrates that fast modes dom-
inate magnetic field fluctuations, whereas slow modes
dominate proton density fluctuations at small θ. As θ
increases, the energy fractions of the three parameters
gradually become comparable. Moreover, the linear de-
crease of Ffast,V as θ increases is consistent with higher
γfast at larger θ. The different angle dependencies in
Ffast,B and Ffast,N can be attributed to the angle de-
pendencies in the calculations of their fluctuations from
proton velocity fluctuations via Eqs. (3,4).

Summary.— This letter presents the first observational
proof of substantial CD modulation in the MHD turbu-
lence cascade. Utilizing an improved MHD mode de-
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FIG. 4. Fast modes. (a) Wavenumber distributions of D̂V+ (color contours), τ−1
fast (black solid curves), and γfast (purple

dashed curves). To facilitate the comparison, the velocity energy spectrum is normalized by the same constant as slow modes

in Fig. 2(a). D̂V+ less than six orders of magnitude or at k < 5×10−5km−1 is set to zero. The yellow line marks the fast-mode
CD truncation scales. (b) Fast-mode cascading rate (τ−1

fast). (c) Fast-mode damping rate (γfast). The blue dotted curve in

each panel marks an isotropic contour k = 2 × 10−4km−1.

FIG. 5. Fast-mode energy fractions in the total energy of
compressible modes. (a) Ffast,ε(k⊥) versus k⊥. (b) Ffast,ε(θ)
versus θ. Blue, red, and yellow curves represent energy frac-
tions of proton velocity (V ), magnetic field (B), and proton
density (N), respectively. The black dashed curves represent
the power-law fits of Ffast,ε(k⊥) or linear fit of Ffast,V (θ).

composition technique, we are able to obtain wavenum-
ber distributions of slow and fast modes via four Cluster
spacecraft measurements in Earth’s magnetosheath. Our
findings are summarized below:

(1) Wavenumber distributions of slow modes are more
stretched perpendicular to B0 under CD modulation
compared to Alfvén modes. In contrast, fast modes are
subject to a more significant CD modulation. Fast modes
exhibit a scale-independent, slight anisotropy above the
CD truncation scales, and their anisotropy increases as
the wavenumbers fall below the CD truncation scales,
which provides the first observational support for the en-
ergy distributions of plasma turbulence shaped by damp-
ing on small scales.

(2) Due to the strong pitch angle dependence, CD in-
creases the slow-mode anisotropy along B0, whereas CD
increases the fast-mode anisotropy perpendicular to B0.

(3) Fast-mode energy fractions in the total energy of
compressible modes (Ffast,V ) presents scale- and angle-
dependent behaviors, which decrease as k⊥ (or θ) in-

creases.

These observational results are consistent with theo-
retical expectations [16, 35], which improves understand-
ing of the role of CD in the cascade of compressible tur-
bulence and the corresponding energy transfer, particle
transport, and particle energization.

We would like to thank the members of the Cluster
spacecraft team and NASA’s Coordinated Data Anal-
ysis Web. The Cluster data are available at https:

//cdaweb.gsfc.nasa.gov. Data analysis was performed
using the IRFU-MATLAB analysis package available at
https://github.com/irfu/irfu-matlab. K.H.Y ac-
knowledge the support from the Laboratory Directed Re-
search and Development program of Los Alamos National
Laboratory under project number(s) 20220700PRD1.

Appendix A: Supplementary details of MHD mode
decomposition

First, to eliminate the edge effect resulting from finite-
length time series, we perform wavelet transforms twice
the length of the studied period and cut off the affected
periods. Second, the wavevector directions calculated by
SVD and background magnetic field are averaged over
four Cluster spacecraft: kSV D = 1

4

∑
i=1,2,3,4 k̂SV D,Ci

and B0 = 1
4

∑
i=1,2,3,4 B0,Ci. Ci denotes the four Clus-

ter spacecraft. Third, k̂SV D = kSV D/|kSV D| and b̂0 =

B0/|B0| are used to build k̂b̂0 coordinates, as shown in
Fig. 6(a). Fourth, in the analyzed interval, magnetic field
data are measured by four Cluster spacecraft, whereas
proton plasma data are only available on Cluster -1.
Thus, the magnetic power is calculated by PBl(t, fsc) =
1
4

∑
i=1,2,3,4WBl,CiW

∗
Bl,Ci

. The proton velocity and den-
sity power are calculated by PVl(t, fsc) = WVl,C1W

∗
Vl,C1

and PN (t, fsc) = WN,C1W
∗
N,C1. WVl , WBl , and WN rep-

https://cdaweb.gsfc.nasa.gov
https://cdaweb.gsfc.nasa.gov
https://github.com/irfu/irfu-matlab
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resent wavelet coefficients of proton velocity, magnetic
field, and proton density fluctuations. The subscript l
represents ê‖, ê⊥1, and ê⊥2 directions.

Notice that SVD does not give the magnitude of
wavevectors. Therefore, in our fifth step, we utilize the
multispacecraft timing analysis based on phase differ-
ences between magnetic wavelet coefficients from four
spacecraft to determine the wavevectors (kBl(t, fsc)) [44].
We interpolate plasma and magnetic field data to a uni-
form time resolution of 23samples/s, to ensure suffi-
cient resolutions for the timing analysis. The phase
differences are determined by six cross-correlations for
the magnetic field [42], i.e., W 12

Bl
= 〈WBl,C1W

∗
Bl,C2〉,

W 13
Bl

= 〈WBl,C1W
∗
Bl,C3〉, W 14

Bl
= 〈WBl,C1W

∗
Bl,C4〉,

W 23
Bl

= 〈WBl,C2W
∗
Bl,C3〉, W 24

Bl
= 〈WBl,C2W

∗
Bl,C4〉, and

W 34
Bl

= 〈WBl,C3W
∗
Bl,C4〉. The angular brackets denote a

time average over 256s, to obtain reliable phase differ-
ences. kBl calculated by l (ê‖, ê⊥1, and ê⊥2) compo-
nents of the magnetic field is assumed to have no mutual
effects at each t and fsc. To simplify, we shall write k as
a shorthand notation for kBl . It is worth noting that k is

not entirely aligned with k̂SV D. Fig. 7 shows wavenum-
ber distributions of proton velocity energy density under
η < 10◦, η < 20◦, and η < 30◦, where η is the angle
between k and k̂b̂0 plane. We report that the anisotropic
signature of fast modes is more prominent when we relax
the constraints on η. It may be because the mode de-
composition between slow and fast modes becomes more
incomplete when using a more relaxed η constraint. Nev-
ertheless, the main properties of energy spectra of slow
and fast modes do not significantly change with the in-
crease of η.

FIG. 6. (a) Schematic of k̂b̂0 coordinates determined by k̂SVD
and b̂0. The red, blue, and green arrows represent the unit
displacement vectors of Alfvén, slow, and fast modes. (b) The
composition of magnetic field fluctuations (purple arrow line).
The yellow dashed line marks the wave front.

Appendix B: Examination of MHD mode
decomposition

According to the linearized induction equation, the
magnetic field within k̂b̂0 plane fluctuates along k̂×(ê‖×

k̂) (along the wave front; yellow dashed line in Fig. 6(b)).
The observed magnetic field fluctuations are given by

δBobs= 〈|δBk,‖ê‖ · (k̂× (ê‖ × k̂))−
δBk,⊥2ê⊥2 · (k̂× (ê‖ × k̂))|〉. (11)

Using the random phase approximation, δBobs ∼√
DB‖ ê‖ ·(k̂×(ê‖× k̂))−

√
DB⊥2

ê⊥2 ·(k̂×(ê‖× k̂)). The

density fluctuations are approximated by δNobs ∼
√
DN .

Fig. 8 shows that the decomposed magnetic field and
density fluctuations (inferred from proton velocity fluc-
tuations using Eqs. (3,4) [21]) are roughly consistent with
those directly measured by FGM and CIS-HIA. Thus, the
results of MHD mode decomposition are reliable.

FIG. 7. Wavenumber distributions of proton velocity fluc-
tuations under η < 10◦ (a,b), η < 20◦ (c,d), and η < 30◦

(e,f). (a,c,e) slow-mode spectra. (b,d,f) fast-mode spectra.
All spectra are normalized with the maximum energy density
to facilitate comparison, where D̂ε± less than six orders of
magnitude or in the bottom left corner (k < 5 × 10−5km−1)
is set to zero. The blue dotted curve in each panel marks an
isotropic contour k = 2 × 10−4km−1.
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